
All the Python code described below is available on Github and pasted below:
https://github.com/tashafiq/CAJ-Investintech.

While researching my pitch, I noticed that previous coverage of the Landlord Tenant Board’s
wait times had focused on averages across application types, despite the LTB’s open data
breaking down wait times more granularly. I hypothesized that tenant wait times would be longer
than those for landlords.

I entered and cleaned the data manually since I believed it would be faster than writing a Python
script, considering there were multiple .csv structures. Given the large volume of application
types, I chose only the two most-common types for analysis. I created a Flourish visual similar
to the final result and found that tenants faced the greatest wait times.

We then had to decide how to describe these findings simply. I didn’t want to average the tenant
and landlord times since the data for individual application types was an average anyways;
further averaging could introduce errors. We settled on using the maximum discrepancy from
the most recent data: “in the last nine months of available data, average wait times for tenant
cases were up to seven months longer than for those brought by landlords.”

That proved to be the easy part. Sources said the LTB hadn’t invested sufficient resources to
address the backlog, but how could we put a number to that? First, I noticed that many online
hearings were being scheduled each week. When the LTB didn’t provide weekly numbers for
these hearings, I realized that an activist-run Twitter account which was publicly sharing the
links could provide the data. This was around the time when Elon Musk declared the Twitter API
would be a paid-for service, so I decided to scrape the activist’s inbox to get the data instead.

After meeting with the activist and obtaining his IMAP credentials, I modified some open-source
Gmail scraping code—my first time using the ‘email’ and ‘imaplib’ packages—to count the Zoom
links in the schedules received from the LTB. Each link was preceded by the words “Zoom link:”
so I summed over that and put the count at the bottom of each email in a .txt file so I could
double check manually. I filled in some missed weeks with links posted by a Facebook group,
Landlords and Tenants of Ontario.

Next, I asked the LTB for their staffing numbers. They said the number of adjudicators
fluctuated with mid-year hirings and could only provide a snapshot in time—clearly unreliable
data. I noticed each adjudicator’s contract term was listed in an annual report, so I wrote an
Excel function (after struggling with Python) to validate whether a given week fell between their
start and end data. Finally, we had a clear metric to back up my sources: the number of
hearings per week skyrocketed while hiring stayed steady. More workload, same resources. A
rushed process.

Some more experience would have sped this process up. I tried to use the ‘datetime’ Python
package but found the date syntax confusing, so switched to an elaborate Excel system of
linked sheets. The adjudicator contracts were in one sheet, the desired weeks in another, and a

https://github.com/tashafiq/CAJ-Investintech

third sheet checked for matches between them. I didn’t know how to use pivot tables, so this
seemed like the best approach.

In further investigations, I plan to use pivot tables for any complex Excel analysis. I’ve also
recently learned that there are OSINT social media scraping tools out there which don’t require
official API access. Any of these might have made it easier to scrape the Twitter and Facebook
posts I used.

"""

Extract selected mails from your gmail account

Starter code:

https://github.com/bnsreenu/python_for_microscopists/tree/master/AMT_02_extra

ct_gmails_from_a_user

1. Make sure you enable IMAP in your gmail settings

(Log on to your Gmail account and go to Settings, See All Settings, and

select

 Forwarding and POP/IMAP tab. In the "IMAP access" section, select Enable

IMAP.)

2. If you have 2-factor authentication, gmail requires you to create an

application

specific password that you need to use.

Go to your Google account settings and click on 'Security'.

Scroll down to App Passwords under 2 step verification.

Select Mail under Select App. and Other under Select Device. (Give a name,

e.g., python)

The system gives you a password that you need to use to authenticate from

python.

"""

Importing libraries

import imaplib

import email as email

import yaml as yaml # To load saved login credentials from a yaml file #yml-

1.3#

with open("credentials.yml") as f:

 content = f.read()

from credentials.yml import user name and password

my_credentials = yaml.load(content, Loader=yaml.FullLoader)

Load the user name and passwd from yaml file

user, password = my_credentials["user"], my_credentials["password"]

URL for IMAP connection

imap_url = 'imap.gmail.com'

Connection with GMAIL using SSL

my_mail = imaplib.IMAP4_SSL(imap_url)

Log in using your credentials

my_mail.login(user, password)

Select the Inbox to fetch messages

my_mail.select('Inbox')

Define Key and Value for email search

For other keys (criteria):

https://gist.github.com/martinrusev/6121028#file-imap-search

key = 'FROM'

value = 'LTB@ontario.ca'

_, data = my_mail.search(None, key, value) # Search for emails with specific

key and value

mail_id_list = data[0].split() # IDs of all emails that we want to fetch

msgs = [] # empty list to capture all messages

Iterate through messages and extract data into the msgs list

for num in mail_id_list:

 typ, data = my_mail.fetch(num, '(RFC822)') # RFC822 returns whole

message (BODY fetches just body)

 msgs.append(data)

Now we have all messages, but with a lot of details

Let us extract the right text and print on the screen

In a multipart e-mail, email.message.Message.get_payload() returns a

list with one item for each part. The easiest way is to walk the message

and get the payload on each part:

https://stackoverflow.com/questions/1463074/how-can-i-get-an-email-

messages-text-content-using-python

NOTE that a Message object consists of headers and payloads.

#Files to write to

file = open('data.txt', 'a')

for msg in msgs[::-1]:

 for response_part in msg:

 if type(response_part) is tuple:

 my_msg = email.message_from_bytes((response_part[1]))

 file.write("___\n")

 file.write("subj:+" +str(my_msg['subject']) +'\n')

 file.write("from:+" +str(my_msg['from']) +'\n')

 file.write("date:+" +str(my_msg['date']) +'\n')

 for part in my_msg.walk():

 if part.get_content_type() == 'text/plain':

 #We'll use the base64 package's decoder:

https://stackoverflow.com/questions/38970760/how-to-decode-a-mime-part-of-a-

message-and-get-a-unicode-string-in-python-2

 bytes = part.get_payload(decode=True)

 charset = part.get_content_charset('iso-8859-1')

 chars = bytes.decode(charset, 'replace')

 #Now we have the email body as a string, from which we

can pull our relevant data

 body = chars.split()

 hearing_count = 0

 urgent_count = 0

 adjourned_count = 0

 for i in range(0,len(body)-1):

 if body[i] == 'Zoom' and body[i+1] == 'Link:':

 hearing_count += 1

 if body[i] == 'Urgent' and body[i+1] == '–':

 urgent_count += 1

 if body[i] == 'Adjourned' and body[i+1] == 'Block':

 adjourned_count = 0

 " ".join(body)

 file.write(str(body) + '\n')

 file.write('\n')

 file.write("total hearings this week:" +

str(hearing_count) + '\n')

 file.write("urgent hearings:" + str(urgent_count) + '\n')

 file.write("adjourned hearings:" + str(adjourned_count) +

'\n')

